Finding rational points on bielliptic genus 2 curves

We discuss a technique for trying to find all rational points on curves of the form $Y^2 = f_3 X^6 + f_2 X^4 + f_1 X^2 + f_0$, where the sextic has nonzero discriminant. This is a bielliptic curve of genus 2. When the rank of the Jacobian is 0 or 1, Chabauty's Theorem may be applied. However, w...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Flynn, E, Wetherell, J
Aineistotyyppi: Journal article
Julkaistu: 1999