Joint training of generic CNN-CRF models with stochastic optimization
We propose a new CNN-CRF end-to-end learning framework, which is based on joint stochastic optimization with respect to both Convolutional Neural Network (CNN) and Conditional Random Field (CRF) parameters. While stochastic gradient descent is a standard technique for CNN training, it was not used f...
主要な著者: | Kirillov, A, Schlesinger, D, Zheng, S, Savchynskyy, B, Torr, P, Rother, C |
---|---|
フォーマット: | Conference item |
出版事項: |
Springer, Cham
2017
|
類似資料
-
Conditional random fields meet deep neural networks for semantic segmentation: combining probabilistic graphical models with deep learning for structured prediction
著者:: Arnab, A, 等
出版事項: (2018) -
Study on MRI Medical Image Segmentation Technology Based on CNN-CRF Model
著者:: Naiqin Feng, 等
出版事項: (2020-01-01) -
Efficient continuous relaxations for dense CRF
著者:: Bunel, R, 等
出版事項: (2016) -
A projected gradient descent method for CRF inference allowing end-to-end training of arbitrary pairwise potentials
著者:: Larsson, M, 等
出版事項: (2018) -
Semantic Segmentation of Remote Sensing Imagery Based on Multiscale Deformable CNN and DenseCRF
著者:: Xiang Cheng, 等
出版事項: (2023-02-01)