Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions
Space-time variational formulations of infinite-dimensional Fokker-Planck (FP) and Ornstein-Uhlenbeck (OU) equations for functions on a separable Hilbert space $H$ are developed. The well-posedness of these equations in the Hilbert space $L^{2}(H,\mu)$ of functions on $H$, which are square-integrabl...
Главные авторы: | Schwab, C, Suli, E |
---|---|
Формат: | Report |
Опубликовано: |
Unspecified
2011
|
Схожие документы
-
Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions
по: Schwab, C, и др.
Опубликовано: (2013) -
Spectral Galerkin approximation of Fokker−Planck equations with unbounded drift
по: Knezevic, D, и др.
Опубликовано: (2007) -
SPECTRAL GALERKIN APPROXIMATION OF FOKKER-PLANCK EQUATIONS WITH UNBOUNDED DRIFT
по: Knezevic, D, и др.
Опубликовано: (2009) -
Spectral Galerkin approximation of Fokker−Planck equations with unbounded drift
по: Knezevic, D, и др.
Опубликовано: (2008) -
Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift
по: Knezevic, D, и др.
Опубликовано: (2007)