Summary: | The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales, may signal collapse to globule, or necklace states, respectively. In the presence of added salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a reentrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed reentrant condensation of DNA.
|