Computational network models for molecular, neuronal and brain data in the presence of long range dependence
<p>Standard parametric statistical approaches based on comparison to global activity tend to perform poorly when this activity varies over multiple scales. Such multiscale variation, termed long range dependence, is a well-documented features of many biological and neurological data sets. We p...
Κύριος συγγραφέας: | Wilsenach, J |
---|---|
Άλλοι συγγραφείς: | Reinert, G |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2021
|
Θέματα: |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Whole-brain comparison of rodent and human brains using spatial transcriptomics
ανά: Antoine Beauchamp, κ.ά.
Έκδοση: (2022-11-01) -
Editorial: Neuroinformatics of large-scale brain modelling
ανά: John D. Griffiths, κ.ά.
Έκδοση: (2022-10-01) -
FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research
ανά: Brendan Behan, κ.ά.
Έκδοση: (2023-05-01) -
FAIR African brain data: challenges and opportunities
ανά: Eberechi Wogu, κ.ά.
Έκδοση: (2025-03-01) -
Editorial: Rising stars in systems neuroscience: 2022
ανά: Mazyar Fallah, κ.ά.
Έκδοση: (2024-05-01)