Computational network models for molecular, neuronal and brain data in the presence of long range dependence
<p>Standard parametric statistical approaches based on comparison to global activity tend to perform poorly when this activity varies over multiple scales. Such multiscale variation, termed long range dependence, is a well-documented features of many biological and neurological data sets. We p...
Главный автор: | Wilsenach, J |
---|---|
Другие авторы: | Reinert, G |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2021
|
Предметы: |
Схожие документы
-
Whole-brain comparison of rodent and human brains using spatial transcriptomics
по: Antoine Beauchamp, и др.
Опубликовано: (2022-11-01) -
Editorial: Neuroinformatics of large-scale brain modelling
по: John D. Griffiths, и др.
Опубликовано: (2022-10-01) -
FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research
по: Brendan Behan, и др.
Опубликовано: (2023-05-01) -
FAIR African brain data: challenges and opportunities
по: Eberechi Wogu, и др.
Опубликовано: (2025-03-01) -
Editorial: Rising stars in systems neuroscience: 2022
по: Mazyar Fallah, и др.
Опубликовано: (2024-05-01)