Probabilistic error analysis for some approximation schemes to optimal control problems
We introduce a class of numerical schemes for optimal stochastic control problems based on a novel Markov chain approximation, which uses, in turn, a piecewise constant policy approximation, Euler–Maruyama time stepping, and a Gauß-Hermite approximation of the Gaußian increments. We provide lower er...
मुख्य लेखकों: | Picarelli, A, Reisinger, C |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
Elsevier
2020
|
समान संसाधन
-
Duality-based a posteriori error estimates for some approximation schemes for optimal investment problems
द्वारा: Picarelli, A, और अन्य
प्रकाशित: (2020) -
Improved order 1/4 convergence for piecewise constant policy approximation of stochastic control problems
द्वारा: Reisinger, C, और अन्य
प्रकाशित: (2019) -
Approximation schemes for mixed optimal stopping and control problems with nonlinear expectations and jumps
द्वारा: Dumitrescu, R, और अन्य
प्रकाशित: (2019) -
Error estimates of penalty schemes for quasi-variational inequalities arising from impulse control problems
द्वारा: Reisinger, C, और अन्य
प्रकाशित: (2020) -
High-order filtered schemes for time-dependent second order HJB equations
द्वारा: Bokanowski, O, और अन्य
प्रकाशित: (2016)