Finding a low-rank basis in a matrix subspace
For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, th...
Hlavní autoři: | Nakatsukasa, Y, Soma, T, Uschmajew, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer Verlag
2016
|
Podobné jednotky
-
On orthogonal tensors and best rank-one approximation ratio
Autor: Li, Z, a další
Vydáno: (2018) -
Low-rank matrix approximations over canonical subspaces
Autor: Achiya Dax
Vydáno: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
Autor: Achiya Dax
Vydáno: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
Autor: Achiya Dax
Vydáno: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
Autor: Achiya Dax
Vydáno: (2020-09-01)