Fast radar motion estimation with a learnt focus of attention using weak supervision
This paper is about fast motion estimation with scanning radar. We use weak supervision to train a focus of attention policy which actively down-samples the measurement stream before data association steps are undertaken. At training, we avoid laborious manual labelling by exploiting short-term sens...
Những tác giả chính: | Aldera, R, De Martini, D, Gadd, M, Newman, p |
---|---|
Định dạng: | Conference item |
Được phát hành: |
IEEE
2019
|
Những quyển sách tương tự
-
What goes around: leveraging a constant-curvature motion constraint in radar odometry
Bằng: Aldera, R, et al.
Được phát hành: (2022) -
RSS-Net: weakly-supervised multi-class semantic segmentation with FMCW radar
Bằng: Kaul, P, et al.
Được phát hành: (2021) -
Keep off the grass: permissible driving routes from radar with weak audio supervision
Bằng: Williams, D, et al.
Được phát hành: (2020) -
What could go wrong? Introspective radar odometry in challenging environments
Bằng: Aldera, R, et al.
Được phát hành: (2019) -
Systems-driven improvements to radar-only ego-motion estimation
Bằng: Aldera, R
Được phát hành: (2021)