Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
Autor Principal: | Vollmer, S |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
2013
|
Títulos similares
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
por: Luca Martino, et al.
Publicado: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
por: Qiang Wu, et al.
Publicado: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
por: Shintaro Hashimoto, et al.
Publicado: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
por: Faming Liang, et al.
Publicado: (2013-01-01) -
Bayesian inverse problems and seismic inversion
por: Lim, S
Publicado: (2016)