Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
מחבר ראשי: | Vollmer, S |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
2013
|
פריטים דומים
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
מאת: Luca Martino, et al.
יצא לאור: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
מאת: Qiang Wu, et al.
יצא לאור: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
מאת: Shintaro Hashimoto, et al.
יצא לאור: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
מאת: Faming Liang, et al.
יצא לאור: (2013-01-01) -
Bayesian inverse problems and seismic inversion
מאת: Lim, S
יצא לאור: (2016)