Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
第一著者: | Vollmer, S |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2013
|
類似資料
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
著者:: Luca Martino, 等
出版事項: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
著者:: Qiang Wu, 等
出版事項: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
著者:: Shintaro Hashimoto, 等
出版事項: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
著者:: Faming Liang, 等
出版事項: (2013-01-01) -
Bayesian inverse problems and seismic inversion
著者:: Lim, S
出版事項: (2016)