Posterior consistency for Bayesian inverse problems through stability and regression results
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes' formula, giving rise to the posterior distribution on the unknown input. In...
Главный автор: | Vollmer, S |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2013
|
Схожие документы
-
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
по: Luca Martino, и др.
Опубликовано: (2021-04-01) -
Kernel Sliced Inverse Regression: Regularization and Consistency
по: Qiang Wu, и др.
Опубликовано: (2013-01-01) -
Robust Bayesian Regression with Synthetic Posterior Distributions
по: Shintaro Hashimoto, и др.
Опубликовано: (2020-06-01) -
Bayesian detection of causal rare variants under posterior consistency.
по: Faming Liang, и др.
Опубликовано: (2013-01-01) -
Bayesian inverse problems and seismic inversion
по: Lim, S
Опубликовано: (2016)