Adversarial robustness guarantees for classification with Gaussian Processes
We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...
主要な著者: | Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Proceedings of Machine Learning Research
2020
|
類似資料
-
Adversarial robustness guarantees for Gaussian processes
著者:: Patane, A, 等
出版事項: (2022) -
Robustness guarantees for Bayesian inference with Gaussian processes
著者:: Cardelli, L, 等
出版事項: (2019) -
Safety guarantees for iterative predictions with Gaussian Processes
著者:: Polymenakos, K, 等
出版事項: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
著者:: Cardelli, L, 等
出版事項: (2019) -
On the adversarial robustness of Gaussian processes
著者:: Patanè, A
出版事項: (2020)