Adversarial robustness guarantees for classification with Gaussian Processes
We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...
Główni autorzy: | Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S |
---|---|
Format: | Conference item |
Język: | English |
Wydane: |
Proceedings of Machine Learning Research
2020
|
Podobne zapisy
-
Adversarial robustness guarantees for Gaussian processes
od: Patane, A, i wsp.
Wydane: (2022) -
Robustness guarantees for Bayesian inference with Gaussian processes
od: Cardelli, L, i wsp.
Wydane: (2019) -
Safety guarantees for iterative predictions with Gaussian Processes
od: Polymenakos, K, i wsp.
Wydane: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
od: Cardelli, L, i wsp.
Wydane: (2019) -
On the adversarial robustness of Gaussian processes
od: Patanè, A
Wydane: (2020)