Adversarial robustness guarantees for classification with Gaussian Processes
We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...
Váldodahkkit: | Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S |
---|---|
Materiálatiipa: | Conference item |
Giella: | English |
Almmustuhtton: |
Proceedings of Machine Learning Research
2020
|
Geahča maid
-
Adversarial robustness guarantees for Gaussian processes
Dahkki: Patane, A, et al.
Almmustuhtton: (2022) -
Robustness guarantees for Bayesian inference with Gaussian processes
Dahkki: Cardelli, L, et al.
Almmustuhtton: (2019) -
Safety guarantees for iterative predictions with Gaussian Processes
Dahkki: Polymenakos, K, et al.
Almmustuhtton: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
Dahkki: Cardelli, L, et al.
Almmustuhtton: (2019) -
On the adversarial robustness of Gaussian processes
Dahkki: Patanè, A
Almmustuhtton: (2020)