Adversarial robustness guarantees for classification with Gaussian Processes

We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...

詳細記述

書誌詳細
主要な著者: Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S
フォーマット: Conference item
言語:English
出版事項: Proceedings of Machine Learning Research 2020