Adversarial robustness guarantees for classification with Gaussian Processes

We investigate adversarial robustness of Gaussian Process classification (GPC) models. Specifically, given a compact subset of the input space T⊆ℝd enclosing a test point x∗ and a GPC trained on a dataset , we aim to compute the minimum and the maximum classification probability for the GPC over al...

全面介紹

書目詳細資料
Main Authors: Blaas, A, Patane, A, Laurenti, L, Cardelli, L, Kwiatkowska, M, Roberts, S
格式: Conference item
語言:English
出版: Proceedings of Machine Learning Research 2020