Learning latent permutations with Gumbel-Sinkhorn networks

Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...

Deskribapen osoa

Xehetasun bibliografikoak
Egile Nagusiak: Mena, G, Snoek, J, Linderman, S, Belanger, D
Formatua: Conference item
Hizkuntza:English
Argitaratua: OpenReview 2018