Learning latent permutations with Gumbel-Sinkhorn networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...
المؤلفون الرئيسيون: | Mena, G, Snoek, J, Linderman, S, Belanger, D |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
OpenReview
2018
|
مواد مشابهة
-
Learning GANs in simultaneous game using Sinkhorn with positive features
حسب: Risman Adnan, وآخرون
منشور في: (2022) -
Learning GANs in Simultaneous Game Using Sinkhorn With Positive Features
حسب: Risman Adnan, وآخرون
منشور في: (2021-01-01) -
Equivalence between the Fitness-Complexity and the Sinkhorn-Knopp algorithms
حسب: D Mazzilli, وآخرون
منشور في: (2024-01-01) -
Distance-weighted Sinkhorn loss for Alzheimer’s disease classification
حسب: Zexuan Wang, وآخرون
منشور في: (2024-03-01) -
Overrelaxed Sinkhorn–Knopp Algorithm for Regularized Optimal Transport
حسب: Alexis Thibault, وآخرون
منشور في: (2021-04-01)