Learning latent permutations with Gumbel-Sinkhorn networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...
Hlavní autoři: | Mena, G, Snoek, J, Linderman, S, Belanger, D |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
OpenReview
2018
|
Podobné jednotky
-
Learning GANs in simultaneous game using Sinkhorn with positive features
Autor: Risman Adnan, a další
Vydáno: (2022) -
Learning GANs in Simultaneous Game Using Sinkhorn With Positive Features
Autor: Risman Adnan, a další
Vydáno: (2021-01-01) -
Equivalence between the Fitness-Complexity and the Sinkhorn-Knopp algorithms
Autor: D Mazzilli, a další
Vydáno: (2024-01-01) -
Distance-weighted Sinkhorn loss for Alzheimer’s disease classification
Autor: Zexuan Wang, a další
Vydáno: (2024-03-01) -
Overrelaxed Sinkhorn–Knopp Algorithm for Regularized Optimal Transport
Autor: Alexis Thibault, a další
Vydáno: (2021-04-01)