Learning latent permutations with Gumbel-Sinkhorn networks

Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Mena, G, Snoek, J, Linderman, S, Belanger, D
Format: Conference item
Sprache:English
Veröffentlicht: OpenReview 2018

Ähnliche Einträge