Learning latent permutations with Gumbel-Sinkhorn networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...
Үндсэн зохиолчид: | Mena, G, Snoek, J, Linderman, S, Belanger, D |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
OpenReview
2018
|
Ижил төстэй зүйлс
-
Learning GANs in simultaneous game using Sinkhorn with positive features
-н: Risman Adnan, зэрэг
Хэвлэсэн: (2022) -
Learning GANs in Simultaneous Game Using Sinkhorn With Positive Features
-н: Risman Adnan, зэрэг
Хэвлэсэн: (2021-01-01) -
Equivalence between the Fitness-Complexity and the Sinkhorn-Knopp algorithms
-н: D Mazzilli, зэрэг
Хэвлэсэн: (2024-01-01) -
Distance-weighted Sinkhorn loss for Alzheimer’s disease classification
-н: Zexuan Wang, зэрэг
Хэвлэсэн: (2024-03-01) -
Overrelaxed Sinkhorn–Knopp Algorithm for Regularized Optimal Transport
-н: Alexis Thibault, зэрэг
Хэвлэсэн: (2021-04-01)