Learning latent permutations with Gumbel-Sinkhorn networks

Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Mena, G, Snoek, J, Linderman, S, Belanger, D
Formaat: Conference item
Taal:English
Gepubliceerd in: OpenReview 2018

Gelijkaardige items