Learning latent permutations with Gumbel-Sinkhorn networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper in...
Hoofdauteurs: | Mena, G, Snoek, J, Linderman, S, Belanger, D |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
OpenReview
2018
|
Gelijkaardige items
-
Learning GANs in simultaneous game using Sinkhorn with positive features
door: Risman Adnan, et al.
Gepubliceerd in: (2022) -
Learning GANs in Simultaneous Game Using Sinkhorn With Positive Features
door: Risman Adnan, et al.
Gepubliceerd in: (2021-01-01) -
Equivalence between the Fitness-Complexity and the Sinkhorn-Knopp algorithms
door: D Mazzilli, et al.
Gepubliceerd in: (2024-01-01) -
Distance-weighted Sinkhorn loss for Alzheimer’s disease classification
door: Zexuan Wang, et al.
Gepubliceerd in: (2024-03-01) -
Overrelaxed Sinkhorn–Knopp Algorithm for Regularized Optimal Transport
door: Alexis Thibault, et al.
Gepubliceerd in: (2021-04-01)