Euler characteristics of Hilbert schemes of points on simple surface singularities
We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C2/G], respectively the singular quotient surface C2/G, where G < SL(2, C) is a finite subgroup of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine spac...
Autors principals: | Gyenge, Á, Némethi, A, Szendroi, B |
---|---|
Format: | Journal article |
Publicat: |
Springer International Publishing
2018
|
Ítems similars
-
Euler characteristics of Hilbert schemes of points on surfaces with simple singularities
per: Szendroi, B, et al.
Publicat: (2016) -
Punctual Hilbert schemes for Kleinian singularities as quiver varieties
per: Craw, A, et al.
Publicat: (2021) -
Hilbert scheme of points on cyclic quotient singularities of type (p, 1)
per: Gyenge, A
Publicat: (2016) -
THE MILNOR FIBRE OF THE PFAFFIAN AND THE HILBERT SCHEME OF FOUR POINTS ON C-3
per: Dimca, A, et al.
Publicat: (2009) -
EULER SYSTEMS FOR HILBERT MODULAR SURFACES
per: ANTONIO LEI, et al.
Publicat: (2018-01-01)