Unsupervised pattern and outlier detection for pedestrian trajectories using diffusion maps
The movement of pedestrian crowds is studied both for real-world applications and to gain fundamental scientific insights into systems of self-driven particles. Trajectory data describes the dynamics of pedestrian crowds at the level of individual movement paths. Analysing such data is a central cha...
Auteurs principaux: | Zeng, F, Bode, N, Gross, T, Homer, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2023
|
Documents similaires
-
Unsupervised outlier detection in multidimensional data
par: Atiq ur Rehman, et autres
Publié: (2021-06-01) -
Unsupervised Outlier Detection in IOT Using Deep VAE
par: Walaa Gouda, et autres
Publié: (2022-09-01) -
Trajectory Outlier Detection on Trajectory Data Streams
par: Keyan Cao, et autres
Publié: (2020-01-01) -
Unsupervised Outlier Profile Analysis
par: Debashis Ghosh, et autres
Publié: (2014-10-01) -
Unsupervised Outlier Profile Analysis
par: Debashis Ghosh, et autres
Publié: (2014-01-01)