Exploration and value function factorisation in single and multi-agent reinforcement learning
<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...
Päätekijä: | Rashid, T |
---|---|
Muut tekijät: | Whiteson, S |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2021
|
Aiheet: |
Samankaltaisia teoksia
-
Monotonic value function factorisation for deep multi-agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2020) -
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2018) -
Weighted QMIX: Expanding monotonic value function factorisation for deep multi−agent reinforcement learning
Tekijä: Rashid, T, et al.
Julkaistu: (2020) -
Rethinking Exploration and Experience Exploitation in Value-Based Multi-Agent Reinforcement Learning
Tekijä: Anatolii Borzilov, et al.
Julkaistu: (2025-01-01) -
Reinforcement Learning with Value Function Decomposition for Hierarchical Multi-Agent Consensus Control
Tekijä: Xiaoxia Zhu
Julkaistu: (2024-09-01)