Exploration and value function factorisation in single and multi-agent reinforcement learning
<p>The ability to learn from data is crucial in developing satisfactory solutions to many complex problems. In particular, in the design of intelligent agents that exist and interact with a complex environment in the pursuit of some goal. In this thesis we investigate some bottlenecks that can...
Päätekijä: | |
---|---|
Muut tekijät: | |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2021
|
Aiheet: |