Multi-task self-supervised visual learning
We investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling-in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very dee...
Главные авторы: | Doersch, C, Zisserman, A |
---|---|
Формат: | Conference item |
Опубликовано: |
IEEE Explore
2017
|
Схожие документы
-
Self-supervised learning of audio-visual objects from video
по: Afouras, T, и др.
Опубликовано: (2020) -
Multi-Task Collaborative Network: Bridge the Supervised and Self-Supervised Learning for EEG Classification in RSVP Tasks
по: Hongxin Li, и др.
Опубликовано: (2024-01-01) -
Sim2real transfer learning for 3D human pose estimation: motion to the rescue
по: Doersch, C, и др.
Опубликовано: (2020) -
Self-supervised learning for spinal MRIs
по: Jamaludin, A, и др.
Опубликовано: (2017) -
Self-supervised multi-task representation learning for sequential medical images
по: Dong, N, и др.
Опубликовано: (2021)