Multi-task self-supervised visual learning
We investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling-in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very dee...
主要な著者: | Doersch, C, Zisserman, A |
---|---|
フォーマット: | Conference item |
出版事項: |
IEEE Explore
2017
|
類似資料
-
Self-supervised learning of audio-visual objects from video
著者:: Afouras, T, 等
出版事項: (2020) -
Multi-Task Collaborative Network: Bridge the Supervised and Self-Supervised Learning for EEG Classification in RSVP Tasks
著者:: Hongxin Li, 等
出版事項: (2024-01-01) -
Sim2real transfer learning for 3D human pose estimation: motion to the rescue
著者:: Doersch, C, 等
出版事項: (2020) -
Self-supervised learning for spinal MRIs
著者:: Jamaludin, A, 等
出版事項: (2017) -
Self-supervised multi-task representation learning for sequential medical images
著者:: Dong, N, 等
出版事項: (2021)