Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
المؤلفون الرئيسيون: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Oxford University Press
2024
|
مواد مشابهة
-
Towards the genomic sequence code of DNA fragility
حسب: Pflughaupt, PK
منشور في: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
حسب: Masuda, K, وآخرون
منشور في: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
حسب: Kairi Masuda, وآخرون
منشور في: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
حسب: Pflughaupt, P, وآخرون
منشور في: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
حسب: Sahakyan, A, وآخرون
منشور في: (2017)