Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
Hlavní autoři: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Oxford University Press
2024
|
Podobné jednotky
-
Towards the genomic sequence code of DNA fragility
Autor: Pflughaupt, PK
Vydáno: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Autor: Masuda, K, a další
Vydáno: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Autor: Kairi Masuda, a další
Vydáno: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
Autor: Pflughaupt, P, a další
Vydáno: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
Autor: Sahakyan, A, a další
Vydáno: (2017)