Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
主要な著者: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Oxford University Press
2024
|
類似資料
-
Towards the genomic sequence code of DNA fragility
著者:: Pflughaupt, PK
出版事項: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
著者:: Masuda, K, 等
出版事項: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
著者:: Kairi Masuda, 等
出版事項: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
著者:: Pflughaupt, P, 等
出版事項: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
著者:: Sahakyan, A, 等
出版事項: (2017)