Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
Үндсэн зохиолчид: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Oxford University Press
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Towards the genomic sequence code of DNA fragility
-н: Pflughaupt, PK
Хэвлэсэн: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
-н: Masuda, K, зэрэг
Хэвлэсэн: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
-н: Kairi Masuda, зэрэг
Хэвлэсэн: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
-н: Pflughaupt, P, зэрэг
Хэвлэсэн: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
-н: Sahakyan, A, зэрэг
Хэвлэсэн: (2017)