Towards the genomic sequence code of DNA fragility for machine learning
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzi...
Những tác giả chính: | Pflughaupt, P, Abdullah, A, Masuda, K, Sahakyan, A |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Oxford University Press
2024
|
Những quyển sách tương tự
-
Towards the genomic sequence code of DNA fragility
Bằng: Pflughaupt, PK
Được phát hành: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Bằng: Masuda, K, et al.
Được phát hành: (2024) -
Quantum mechanical electronic and geometric parameters for DNA k-mers as features for machine learning
Bằng: Kairi Masuda, et al.
Được phát hành: (2024-08-01) -
Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule
Bằng: Pflughaupt, P, et al.
Được phát hành: (2023) -
Machine learning model for sequence-driven DNA G-quadruplex formation
Bằng: Sahakyan, A, et al.
Được phát hành: (2017)