An N=1 3d-3d correspondence
M5-branes on an associative three-cycle M3 in a G2-holonomy manifold give rise to a 3d N = 1 supersymmetric gauge theory, TN=1[M3]. We propose an N = 1 3d-3d correspondence, based on two observables of these theories: the Witten index and the S3-partition function. The Witten index of a 3d N = 1 the...
主要な著者: | Eckhard, J, Schafer-Nameki, S, Wong, J-M |
---|---|
フォーマット: | Journal article |
出版事項: |
Springer
2018
|
類似資料
-
Higher-Form Symmetries, Bethe Vacua, and the 3d-3d Correspondence
著者:: Eckhard, J, 等
出版事項: (2020) -
Higher-form symmetries, Bethe vacua, and the 3d-3d correspondence
著者:: Julius Eckhard, 等
出版事項: (2020-01-01) -
Trifectas for T-N in 5d
著者:: Eckhard, J, 等
出版事項: (2020) -
Spin(7)-manifolds as generalized connected sums and 3d N=1 theories
著者:: Braun, A, 等
出版事項: (2018) -
Spin(7)-manifolds as generalized connected sums and 3d N=1 $$ \mathcal{N}=1 $$ theories
著者:: Andreas P. Braun, 等
出版事項: (2018-06-01)