The a posteriori finite element method (APFEM), a framework for efficient parametric study and Bayesian inferences
Stochastic methods have recently been the subject of increased attention in Computational Mechanics for their ability to account for the stochasticity of both material parameters and geometrical features in their predictions. Among them, the Galerkin Stochastic Finite Element Method (GSFEM) was show...
主要な著者: | Ammouche, Y, Jérusalem, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elsevier
2023
|
類似資料
-
Extension of APFEM to geometrical alterations and application to stochastic homogenisation
著者:: Ammouche, Y, 等
出版事項: (2024) -
A modular nonlinear stochastic finite element formulation for uncertainty estimation
著者:: Ammouche, Y, 等
出版事項: (2022) -
A modular nonlinear stochastic finite element formulation for uncertainty estimation
著者:: Ammouche, Y
出版事項: (2023) -
Bayesian parametric inference /
著者:: 408947 Bansal, Ashok K
出版事項: (2007) -
Finite element methods : superconvergence, post-processing, and a posteriori estimates /
著者:: Krizek, M., 等
出版事項: (1998)