Fast and accurate randomized algorithms for linear systems and eigenvalue problems
This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (``sketching"") to accelerate standard subspace projection methods, such as GMRES and Rayleigh--Ritz. This modification makes it possible...
Главные авторы: | Nakatsukasa, Y, Tropp, JA |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Society for Industrial and Applied Mathematics
2024
|
Схожие документы
-
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
по: Nakatsukasa, Y, и др.
Опубликовано: (2019) -
Rectangular eigenvalue problems
по: Hashemi, B, и др.
Опубликовано: (2022) -
Least-squares spectral methods for ODE eigenvalue problems
по: Hashemi, B, и др.
Опубликовано: (2022) -
Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
по: Adachi, S, и др.
Опубликовано: (2017) -
Solving two-parameter eigenvalue problems using an alternating method
по: Eisenmann, H, и др.
Опубликовано: (2022)