Fast and accurate randomized algorithms for linear systems and eigenvalue problems
This paper develops a class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized dimension reduction (``sketching"") to accelerate standard subspace projection methods, such as GMRES and Rayleigh--Ritz. This modification makes it possible...
Main Authors: | Nakatsukasa, Y, Tropp, JA |
---|---|
格式: | Journal article |
語言: | English |
出版: |
Society for Industrial and Applied Mathematics
2024
|
相似書籍
-
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
由: Nakatsukasa, Y, et al.
出版: (2019) -
Rectangular eigenvalue problems
由: Hashemi, B, et al.
出版: (2022) -
Least-squares spectral methods for ODE eigenvalue problems
由: Hashemi, B, et al.
出版: (2022) -
Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
由: Adachi, S, et al.
出版: (2017) -
Solving two-parameter eigenvalue problems using an alternating method
由: Eisenmann, H, et al.
出版: (2022)