What is the theory ZFC without power set?
We show that the theory ZFC, consisting of the usual axioms of ZFC but with the power set axiom removed—specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered—is weaker than commonly supposed and...
Main Authors: | Gitman, V, Hamkins, J, Johnstone, T |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Wiley
2016
|
פריטים דומים
-
ZFC proves that the class of ordinals is not weakly compact for definable classes
מאת: Enayat, A, et al.
יצא לאור: (2018) -
Small sets in convex geometry and formal independence over ZFC
מאת: Menachem Kojman
יצא לאור: (2005-01-01) -
Topology and models of ZFC at early Universe
מאת: Jerzy Król, et al.
יצא לאור: (2019-07-01) -
A Generic Model in Which the Russell-Nontypical Sets Satisfy ZFC Strictly between HOD and the Universe
מאת: Vladimir Kanovei, et al.
יצא לאור: (2022-02-01) -
Optimization of the Guiding Stability of a Horizontal Axis HTS ZFC Radial Levitation Bearing
מאת: António J. Arsénio, et al.
יצא לאור: (2021-11-01)