Coagulation--fragmentation duality, Poisson--Dirichlet distributions and random recursive trees
In this paper we give a new example of duality between fragmentation and coagulation operators. Consider the space of partitions of mass (i.e., decreasing sequences of nonnegative real numbers whose sum is 1) and the two-parameter family of Poisson--Dirichlet distributions $\operatorname {PD}(\alpha...
主要な著者: | Dong, R, Goldschmidt, C, Martin, J |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2005
|
類似資料
-
Single-Block Recursive Poisson–Dirichlet Fragmentations of Normalized Generalized Gamma Processes
著者:: Lancelot F. James
出版事項: (2022-02-01) -
Random recursive trees and the Bolthausen-Sznitman coalescent
著者:: Goldschmidt, C, 等
出版事項: (2005) -
Random recursive trees and the Bolthausen-Sznitman coalescent
著者:: Goldschmidt, C
出版事項: (2005) -
REGENERATIVE TREE GROWTH: BINARY SELF-SIMILAR CONTINUUM RANDOM TREES AND POISSON-DIRICHLET COMPOSITIONS
著者:: Pitman, J, 等
出版事項: (2009) -
Dual random fragmentation and coagulation and an application to the genealogy of Yule processes
著者:: Bertoin, J, 等
出版事項: (2004)