Simulated likelihood inference for stochastic volatility models using continuous particle filtering
Discrete-time stochastic volatility (SV) models have generated a considerable literature in financial econometrics. However, carrying out inference for these models is a difficult task and often relies on carefully customized Markov chain Monte Carlo techniques. Our contribution here is twofold. Fir...
主要な著者: | Pitt, M, Malik, S, Doucet, A |
---|---|
フォーマット: | Journal article |
出版事項: |
2014
|
類似資料
-
Simulated likelihood inference for stochastic volatility models using continuous particle filtering
著者:: Pitt, M, 等
出版事項: (2014) -
Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.
著者:: Kim, S, 等
出版事項: (2005) -
Stochastic volatility: likelihood inference and comparison with ARCH models.
著者:: Kim, S, 等
出版事項: (1994) -
Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.
著者:: Kim, S, 等
出版事項: (2003) -
Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models
著者:: Omar Abbara, 等
出版事項: (2022-12-01)