Towards registered single quantum dot photonic devices.
We have registered the position and wavelength of a single InGaAs quantum dot using an innovative cryogenic laser lithography technique. This approach provides accurate marking of the location of self-organized dots and is particularly important for realizing any solid-state cavity quantum electrody...
Հիմնական հեղինակներ: | , , , , , , , , , |
---|---|
Ձևաչափ: | Journal article |
Լեզու: | English |
Հրապարակվել է: |
2008
|
Ամփոփում: | We have registered the position and wavelength of a single InGaAs quantum dot using an innovative cryogenic laser lithography technique. This approach provides accurate marking of the location of self-organized dots and is particularly important for realizing any solid-state cavity quantum electrodynamics scheme where the overlap of the spectral and spatial characteristics of an emitter and a cavity is essential. We demonstrate progress in two key areas towards efficient single quantum dot photonic device implementation. Firstly, we show the registration and reacquisition of a single quantum dot with 50 and 150 nm accuracy, respectively. Secondly, we present data on the successful fabrication of a photonic crystal L3 cavity following the registration process. |
---|