A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Egile nagusia: | Goyens, F |
---|---|
Beste egile batzuk: | Cartis, C |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
2021
|
Gaiak: |
Antzeko izenburuak
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
nork: Goyens, F, et al.
Argitaratua: (2022) -
Control perspectives on numerical algorithms and matrix problems /
nork: 444990 Bhaya, Amit, et al.
Argitaratua: (2006) -
Basis set approach in the constrained interpolation profile method /
nork: Utsumi, T., et al.
Argitaratua: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
nork: Pearson, J
Argitaratua: (2013) -
Efficient algorithms for compressed sensing and matrix completion
nork: Wei, K
Argitaratua: (2014)