A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Hoofdauteur: | Goyens, F |
---|---|
Andere auteurs: | Cartis, C |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2021
|
Onderwerpen: |
Gelijkaardige items
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
door: Goyens, F, et al.
Gepubliceerd in: (2022) -
Control perspectives on numerical algorithms and matrix problems /
door: 444990 Bhaya, Amit, et al.
Gepubliceerd in: (2006) -
Basis set approach in the constrained interpolation profile method /
door: Utsumi, T., et al.
Gepubliceerd in: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
door: Pearson, J
Gepubliceerd in: (2013) -
Efficient algorithms for compressed sensing and matrix completion
door: Wei, K
Gepubliceerd in: (2014)