Applied machine learning for the prediction of growth of abdominal aortic aneurysm in humans
<strong>Objective</strong> Accurate prediction of abdominal aortic aneurysm (AAA) growth in an individual can allow personalised stratification of surveillance intervals and better inform the timing for surgery. The authors recently described the novel significant association between fl...
Hoofdauteurs: | Lee, R, Jarchi, D, Perera, R, Jones, A, Cassimjee, I, Handa, A, Clifton, D |
---|---|
Formaat: | Journal article |
Gepubliceerd in: |
Elsevier
2018
|
Gelijkaardige items
-
Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans
door: R. Lee, et al.
Gepubliceerd in: (2018-01-01) -
Engaging patients for their opinions regarding research of abdominal aortic aneurysms
door: Lee, R, et al.
Gepubliceerd in: (2018) -
Patients’ opinions regarding research and management of abdominal aortic aneurysms
door: Lee, R, et al.
Gepubliceerd in: (2017) -
Integrated physiological and biochemical assessments for the prediction of growth of abdominal aortic aneurysms in humans
door: Lee, R, et al.
Gepubliceerd in: (2018) -
Flow mediated dilatation and the progression of abdominal aortic aneurysms
door: Lee, R, et al.
Gepubliceerd in: (2017)