A Krylov-Schur approach to the truncated SVD
Computing a small number of singular values is required in many practical applications and it is therefore desirable to have efficient and robust methods that can generate such truncated singular value decompositions. A new method based on the Lanczos bidiagonalization and the Krylov-Schur method is...
Hlavní autor: | Stoll, M |
---|---|
Médium: | Report |
Vydáno: |
Unspecified
2008
|
Podobné jednotky
-
A Hamiltonian Krylov-Schur-type method based on the
symplectic Lanczos process
Autor: Benner, P, a další
Vydáno: (2009) -
A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process
Autor: Benner, P, a další
Vydáno: (2009) -
Complex Eigenvalue Analysis of Multibody Problems via Sparsity-Preserving Krylov–Schur Iterations
Autor: Dario Mangoni, a další
Vydáno: (2023-02-01) -
SVD-Krylov based techniques for structure-preserving reduced order modelling of second-order systems
Autor: Md. Motlubar Rahman, a další
Vydáno: (2021-06-01) -
Correction: SVD-Krylov based techniques for structure-preserving reduced order modelling of second-order systems
Autor: Md. Motlubar Rahman, a další
Vydáno: (2021-08-01)