Enhancing stock volatility prediction with the AO-GARCH-MIDAS model

Research has substantiated that the presence of outliers in data usually introduces additional errors and biases, which typically leads to a degradation in the precision of volatility forecasts. However, correcting outliers can mitigate these adverse effects. This study corrects the additive outlier...

詳細記述

書誌詳細
主要な著者: Liu, Ting, Choo, Weichong, Tunde, Matemilola Bolaji, Wan, Cheongkin, Liang, Yifan
フォーマット: 論文
言語:English
出版事項: Public Library of Science 2024
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/113480/1/113480.pdf