Summary: | Thesis ini membentangkan hasil kajian tentang proses punaran secara fizikal
menggunakan hentaman Argon ke atas substrat α-kuarza dan amorfus kuarza dengan
menggunakan kaedah molekular mekanik. Walaupun kajian mendalam terhadap
proses punaran ke atas kuarza sudah ada, namun kebanyakan daripadanya adalah
secara eksperimen dan fokus kajian tersebut hanyalah pada hasil akhir proses
tersebut. Terlalu sedikit kajian dijalankan yang menjurus kepada asas dan
fundamental proses punaran. Dengan menggunakan kaedah Monte Carlo (MC) dan
Molekular Dinamik (MD), para pengkaji dan ahli akademik mampu membina model
proses punaran daripada awal hingga penghujung proses tersebut. Teknik ini
membolehkan proses ini dikaji di tahap saiz sekecil molekul dan membantu pengkaji
memahami teori asas dan fundamental proses punaran terhadap kuarza.
Dua teknik penkomputeran digunakan untuk membina model proses punaran
secara fizikal ke atas substrat kuarza. Teknik pertama berdasarkan statisik (teknik
Monte Carlo) dan teknik kedua berdasarkan teknik ketentuan (Molekular Dinamik).
Untuk teknik Monte Carlo, produk utama yang dicari adalah hasil percikan, Ys dan
pembahagian tenaga pada atom yang terpercik. Selain itu, hubungan antara tenaga
tujahan, Ei, sudut tujahan, θi kepada hasil akhir juga dibincangkan. Berdasarkan
teknik ini, pada sudut tujahan, θi =70⁰ dengan sebarang tenaga tujahan, Ei,hasil
percikan, Ys yang dihasilkan adalah maximum.
Teknik molecular dinamik pula melaporkan kesan terhadap punaran secara
terpilih, kesan suhu substrat,Ts dan kesan tenaga tujahan, Ei terhadap hasil
pemercikan atom dan seterusnya menghubungkan hasil pemercikan atom dengan
sifat-sifat subtrak. Objektif utama projek ini adalah untuk mengguna kaedah
pengkomputeran bagi membina model proses punaran di skala dalam molekul. Dua
jenis substrat yang berlainan (α-kuarza dan amorfus kuarza) digunakan dan substrat
tersebut melalui proses hentaman Argon dengan tenaga tujahan, Ei suhu substrat, Ts
berlainan secara berkala. Model komputer punaran kuarza menggunakan Potensi
Morse dan Potensi COMB (Charged Optimized Many-Body) sebagai potensi antara
atom.
Berdasarkan kajian yang telah dibuat, α-kuarza menghasilkan pemercikan atom
lebih tinggi daripada amorfus kuarza dengan menggunakan mana-mana tenaga
tujahan, Ei dan suhu substrak, Ts. α-kuarza juga menghasilkan pemercikan atom yang
lebih stoikiometrik berbanding amorfus kuarza. Ini desebabkan untuk α-kuarza
produk pemercikan dalam bentuk SiO2 dan amorfus kuarza dalam bentuk atom.
Tenaga tujuhan, Ei menghasilan impak yang lebih besar kepada hasil pemercikan
atom berbanding suhu substrak, Ts.
Di dalam kajian ini, model pengkomputeran untuk proses punaran berjaya
didemonstrasikan dengan mengunakan kaedah Monte Carlo (MC) dan Molekular
Dinamik (MD). Beberapa faktor yang memberi kesan ke atas punaran telah pun
dikaji dan pemahamam terhadap proses punaran di skala molekul berjaya ditambah.
Hasil kajian dari tesis ini berpotensi untuk digunakan di dalam proses pencorakan
untuk fabrikasi nano 2D dan 3D.
________________________________________________________________________________________________________________________
In this thesis, the physical etching of argon bombardment onto α-quartz and
amorphous quartz substrates were studied and investigated using molecular
mechanics methods. Although there are extensive studies on quartz etching, larger
numbers of the research are experimental and the studies focus on the process
outcomes rather than the fundamental study of the process. Molecular mechanics
methods such as Monte Carlo (MC) method and Molecular Dynamics (MD) method
enables researchers in building the model from ground up to the physical etching
process. This kind of bottom-up design allows us to study the process in molecular
level and help researcher grasp the fundamental theory of the process.
Two computational methods have been employed in order to study quartz
etching process. The first method are based on statistical approach i.e Monte Carlo
and the second method is based on deterministic approach i.e Molecular Dynamics.
In Monte Carlo method, the main interest of the simulations is sputtering yield, Ys
and energy distribution of sputtered atoms. The relationship of incident energy, Ei ,
and incident angle θi to the interested subjects will also been investigated and
discussed. It was found that at incident angle θi =70⁰ at any incident energy, Ei, the
sputtering yield, Ys is maximum.
Molecular Dynamics method reported the effect of etching selectivity, the
effect of substrate temperature, Ts, and the effect of incident energy, Ei to the
sputtering yield and ultimately corroborates the factor and sputtering yield with the
properties of the substrate. The main objective of this project is to use computational
method (i.e Molecular Dynamics) to model the process at the scale of molecular
level. Two difference substrates (amorphous and α-quartz) are subjected to a range of
incident energy. Ei and temperature, Ts and the sputtering yield were studied. Morse
potential and Second Generation Charge-Optimized Many Body (COMB) potentials
were utilised as the inter-atomic potential.
α-quartz shows higher sputtering yield as compared to amorphous quartz at
any given incident energy, Ei and substrate temperature, Ts. α-quartz has also
produced more stoichiometric yield compared to amorphous quartz. This is because
for α quartz, the sputtered product are in mostly the form of SiO2 molecule while
amorphous substrate the sputtered product in the form of atom. Incident enery, Ei
gave significant increase in the sputtering yield compared to temperature, Ts.
In this thesis, the computational model of physical etching on quartz has been
demonstrated using the Monte Carlo (MC) method and Molecular Dynamics (MD)
method. Several factors are studied and better understandings of the process in
molecular level have been achieved. The results of this study could be applied in 2D
and 3D patterning used in lithography technique.
|