Unsupervised Anomaly Detection with Unlabeled Data Using Clustering

Intrusions pose a serious security risk in a network environment. New intrusion types, of which detection systems are unaware, are the most difficult to detect. The amount of available network audit data instances is usually large; human labeling is tedious, time-consuming, and expensive. Traditiona...

ver descrição completa

Detalhes bibliográficos
Principais autores: Chimphlee, Witcha, Abdullah, Abdul Hanan, Md. Sap, Mohd. Noor
Formato: Conference or Workshop Item
Idioma:English
Publicado em: 2005
Assuntos:
Acesso em linha:http://eprints.utm.my/3356/1/Mohd_Noor_-_Unsupervised_Anomaly_Detection_with_Unlabeled_Data.pdf